1. Introduction

Un bon cycliste connait les trucs et astuces pour économiser son énergie, que se soit dans le choix de son matériel ou lorsqu'il gère son effort. Il est très facile pour un débutant d'acquérir du bon matériel chez un spécialiste mais lorsqu'il s'agit de gérer son effort sur la distance ça devient plus complexe. Un moyen efficace serait de savoir en continu si notre cadence, donc intrinsèquement notre choix de plateau, est le bon ou alors si il faut changer de vitesse pour maintenir une cadence optimale. Nous allons développer un système d'assistance, comme il existe sur les voitures récentes, qui permet au cycliste de maintenir une bonne cadence. Il aura aussi un but pédagogique car avec le temps l'utilisateur saura adapter et garder sa vitesse avec l'expérience.

1. Matériel et méthodes

1.1 Arduino UNO

Arduino UNO est un circuit imprimé possédant un micro-contrôleur programmable. Celui-ci permet d'analyser et de créer des signaux électriques ce qui permet d'effectuer un grand nombre d'actions. Celui que nous utilisons pour ce projet sera l'Arduino UNO, le modèle standard de taille moyenne et très accessible.

1.2 Aimant-récepteur

L'objet le plus simple pour mesurer un tour de pédalier est celui qui est utilisé sur la plupart des technologies embarquées pour cyclistes: l'aimant. Un récepteur se situera sur le cadre alors que l'aimant lui fixé sur la pédale lui passera devant à chaque fois que la pédale accomplit un tour. Le champ magnétique de l'aimant va agir sur le récepteur et émettre un signal.

Nous avons donc acheté un ordinateur de bicyclette d'entrée de gamme puisque nous utiliserons juste l'aimant, le récepteur et un bout du câble, acheter un bon écran aurait été inutile.

Il était donc important de bien dénuder les fils, les séparer et enlever la peinture isolante. Voici donc les deux objets :

DSC_2443.jpg

Nous avons aussi soudé le bout des fils de cuivre dénudés pour y attacher une pointe de métal conducteur qui facilitera l'introduction de ce dernier dans le système Arduino. Voilà à quoi ces fils dénudés doivent ressembler :

DSC_2444.jpg

Grâce à un oscilloscope nous avons pincé les deux extrémités de fil et analysé le signal reçu lorsqu'on approchait l'aimant du récepteur. Mais contrairement à toutes nos attentes le signal passe à zéro lorsqu'il y a l'impulsion de l'aimant. (voir image ci-dessous)

Contact_aimant.bmp

Après discussion avec notre professeur de physique (M. Jeambrun) ,nous arrivons a la conclusion qu'une pile est intégrée dans le détecteur et lorsque l'aimant est approché le circuit s'ouvre.

Ceci nous a même plutôt arrangés puisque nous avons pas besoin d'algorithme qui nous détecte les pics mais juste d'écrire

if (analogRead(SENSOR_PIN) == 0)
{
"Votre instruction"
}

Lorsque l'information reçue par le SENSOR_PIN est égale a zéro alors l'instruction pourra être effectuée.

1.3 Accéléromètre

Nous avons fait des recherches sur internet pour trouver des indications sur le nombre de tours de pédale par minute idéaux. Deux sites de passionnés sérieux nous ont attiré l'attention :

http://www.entente-cycliste-christophorienne.fr/cadence_de_pedalage.html

http://www.velo101.com/forum/voirsujet/frequence-de-pedalage-ideale--13150

Nous avons donc remarqué que la pente influe aussi sur la cadence, nous aurons besoin d'un accéléromètre-gyroscope pour mesurer celle-ci. Cette fois pour voir quelle information ressortait de notre capteur nous avons du chercher sur le net et nous sommes tombés sur ce lien:

http://www.geekmomprojects.com/gyroscopes-and-accelerometers-on-a-chip/

Cette internaute nous a mâché le travail en codant un algorithme qui traite l'information et qui lisse le signal. Il y a même une photo du câblage Arduino qui nous a été fort utile. Son code est extrêmement compliqué et un grand nombre de #define sont inutiles, c'est pourquoi je ne vais copier que la partie intéressante, vous trouverez le code intégral à la fin.

 
void loop()
{
  static unsigned long startTime;
   static byte firstRise = 1;
   unsigned long now = micros();
  int error;
  accel_t_gyro_union accel_t_gyro;

  // Read the raw values.
  error = read_gyro_accel_vals((uint8_t*) &accel_t_gyro);

  // Get the time of reading for rotation computations
  unsigned long t_now = millis();

  // Convert gyro values to degrees/sec
  float FS_SEL = 131;

  float gyro_x = (accel_t_gyro.value.x_gyro - base_x_gyro)/FS_SEL;
  float gyro_y = (accel_t_gyro.value.y_gyro - base_y_gyro)/FS_SEL;
  float gyro_z = (accel_t_gyro.value.z_gyro - base_z_gyro)/FS_SEL;

  // Get raw acceleration values
  //float G_CONVERT = 16384;
  float accel_x = accel_t_gyro.value.x_accel;
  float accel_y = accel_t_gyro.value.y_accel;
  float accel_z = accel_t_gyro.value.z_accel;

  // Get angle values from accelerometer
  float RADIANS_TO_DEGREES = 180/3.14159;
  float accel_angle_y = atan(-1*accel_x/sqrt(pow(accel_y,2) + pow(accel_z,2)))*RADIANS_TO_DEGREES;
  float accel_pente = atan(accel_y/sqrt(pow(accel_x,2) + pow(accel_z,2)))*RADIANS_TO_DEGREES;

  // Compute the (filtered) gyro angles
  float dt =(t_now - get_last_time())/1000.0;
  float gyro_pente = gyro_x*dt + get_last_x_angle();
  float gyro_angle_y = gyro_y*dt + get_last_y_angle();
  float gyro_angle_z = gyro_z*dt + get_last_z_angle();

  // Compute the drifting gyro angles
  float unfiltered_gyro_pente = gyro_x*dt + get_last_gyro_x_angle();
  float unfiltered_gyro_angle_y = gyro_y*dt + get_last_gyro_y_angle();
  float unfiltered_gyro_angle_z = gyro_z*dt + get_last_gyro_z_angle();

  // Apply the complementary filter to figure out the change in angle - choice of alpha is
  // estimated now.  Alpha depends on the sampling rate...
  float alpha = 0.96;
  float pente = alpha*gyro_pente + (1.0 - alpha)*accel_pente;
  float angle_y = alpha*gyro_angle_y + (1.0 - alpha)*accel_angle_y;
  float angle_z = gyro_angle_z;  //Accelerometer doesn't give z-angle

  // Update the saved data with the latest values
  set_last_read_angle_data(t_now, pente, angle_y, angle_z, unfiltered_gyro_pente, unfiltered_gyro_angle_y, unfiltered_gyro_angle_z);

  // Send the data to the serial port
  Serial.print(F(" #FIL : "));             //Filtered angle
  Serial.print(pente, 2);
 // Serial.print(angle_y, 2);
  Serial.print(F(", "));
 // Serial.print(angle_z, 2);
  Serial.println(F(""));

  // Delay so we don't swamp the serial port
  delay(5);

La partie affichant l'angle y a été commentée puisque seule la pente, qui est donnée par l'axe des x, nous intéresse.

1.4 Traitement et calculs

Nous avons donc les deux informations dont nous avions besoin la cadence et la pente, voici un schéma illustrant notre projet général.

Projet_info.png

Ces deux informations vont donc devoir être traitées et utilisées pour indiquer au cycliste quel choix faire. Nous en avons discuté et le code le plus optimisé à notre gout se présente de cette forme :


//Si l'aimant passe devant le capteur
   if (analogRead(SENSOR_PIN) == 0) {
     cadence = now - startTime; // La cadence est l'écart entre maintenant et le dernier appel
     Serial.println(cadence); // Affichage de la cadence dans la console pour vérifier
      startTime = now;  //On remet a zéro l'écart
    } 

Cadence.png

Voilà comment la cadence est reçue, en Microsecondes! La méthode que nous avons utilisé par la suite est fonctionnelle, mais loin d'être optimisée et précise. Notre manque d'expérience ne nous permettait pas de trouver une manière élégante d'exprimer la suite.

1.5 Contact utilisateur

L'utilisateur ne verra qu'une petite LED RGB fixée sur le guidon, il n'aura qu'à exécuter l'action correspondant à la couleur :

Bleu --> Augmenter sa vitesse

Vert --> Continuer à pédaler et sourire

Rouge --> Réduire la vitesse

Pour initialiser cette LED nous avons suivi le guide proposé par le cours et nous l'avons intégré dans chacune des possibilités de pente et de cadence. C'est ici que notre code devient grossier voici comment il se présente :

//Si l'aimant passe devant le capteur
if (analogRead(SENSOR_PIN) == 0) {
//Cadence = écart entre dernier tour et maintenant 
cadence = now - startTime;

//on tiendra compte de +/- 5 tours minutes
//85 tours par minute a plat FAUX -
if (pente > -3 && pente < 3 && cadence < 750000 )
{ 
setColor(0, 0, 255);  // blue
}
//85 tours par minute a plat FAUX +
if (pente > -3 && pente < 3 && cadence > 666666 )
{ 
setColor(255, 0, 0);  // red
}

//85 tours par minute a plat JUSTE
if (pente > -3 && pente < 3 && cadence > 451651456  )
{ 
setColor(0, 255, 0);  // green
}

//75 tours par minute en montée faible FAUX -
if (pente > 3 && pente < 13 && cadence < 4561894)
{ 
setColor(0, 0, 255);  // blue
}

//75 tours par minute en montée faible FAUX +
if (pente > 3 && pente < 13 && cadence > 5416515 )
{ 
setColor(255, 0, 0);  // red
}

//70 tours par minute en montée faible JUSTE
if (pente > 3 && pente < 13 && cadence > 451511 )
{ 
setColor(0, 255, 0);  // green
}

//70 tours par minute en montée hardcore FAUX -
if (pente > 13 && pente < 30 && cadence > 545114 )
{ 
setColor(0, 0, 255);  // blue
}

//70 tours par minute en montée hardcore FAUX +
if (pente > 13 && pente < 30 && cadence < 514845 )
{ 
setColor(255, 0, 0);  // red
}

//95 tours par minute en montée hardcore JUSTE
if (pente > 13 && pente < 30 && cadence < 451516 )
{ 
setColor(0, 255, 0);  // green
}

// tours par minute en descente FAUX -
if (pente < -3 && cadence < 564646)
{ 
setColor(0, 0, 255);  // blue
}

// tours par minute en descente FAUX +
if (pente < -3 && cadence <564645 )
{ 
setColor(255, 0, 0);  // red
}

// tours par minute en descente JUSTE
if (pente < -3 && cadence < 456456)
{ 
setColor(0, 255, 0);  // green
}

Serial.println(cadence);

//On remet a zéro l'écart
startTime = now;
} 
}

  void setColor(int red, int green, int blue)
{
  analogWrite(redPin, red);
  analogWrite(greenPin, green);
  analogWrite(bluePin, blue);
}

La fonction void setColor est appelée à chaque fois que nous voulons changer la couleur de la led. Nous avons traités cas par cas les pentes et les cadences de l'utilisateur, le commentaire FAUX + indique la partie de la fonction qui va agir si l'utilisateur a une trop grosse cadence, FAUX - va agir si la cadence est trop faible et JUSTE va agir si la cadence est dans la tranche voulue.

3. Résultats

Voici ce que donne notre code lorsque nous réunissons toutes les fonctions :


// MPU-6050 Accelerometer + Gyro
// -----------------------------
//
// By arduino.cc user "Krodal".
// June 2012
// Open Source / Public Domain
//
// Using Arduino 1.0.1
// It will not work with an older version,
// since Wire.endTransmission() uses a parameter
// to hold or release the I2C bus.
//
// Documentation:
// - The InvenSense documents:
// - "MPU-6000 and MPU-6050 Product Specification",
// PS-MPU-6000A.pdf
// - "MPU-6000 and MPU-6050 Register Map and Descriptions",
// RM-MPU-6000A.pdf or RS-MPU-6000A.pdf
// - "MPU-6000/MPU-6050 9-Axis Evaluation Board User Guide"
// AN-MPU-6000EVB.pdf
//
// The accuracy is 16-bits.
//
// Temperature sensor from -40 to +85 degrees Celsius
// 340 per degrees, -512 at 35 degrees.
//
// At power-up, all registers are zero, except these two:
// Register 0x6B (PWR_MGMT_2) = 0x40 (I read zero).
// Register 0x75 (WHO_AM_I) = 0x68.
//

#include <Wire.h>


// The name of the sensor is "MPU-6050".
// For program code, I omit the '-',
// therefor I use the name "MPU6050....".


// Register names according to the datasheet.
// According to the InvenSense document
// "MPU-6000 and MPU-6050 Register Map
// and Descriptions Revision 3.2", there are no registers
// at 0x02 ... 0x18, but according other information
// the registers in that unknown area are for gain
// and offsets.
//
#define MPU6050_AUX_VDDIO 0x01 // R/W
#define MPU6050_SMPLRT_DIV 0x19 // R/W
#define MPU6050_CONFIG 0x1A // R/W
#define MPU6050_GYRO_CONFIG 0x1B // R/W
#define MPU6050_ACCEL_CONFIG 0x1C // R/W
#define MPU6050_FF_THR 0x1D // R/W
#define MPU6050_FF_DUR 0x1E // R/W
#define MPU6050_MOT_THR 0x1F // R/W
#define MPU6050_MOT_DUR 0x20 // R/W
#define MPU6050_ZRMOT_THR 0x21 // R/W
#define MPU6050_ZRMOT_DUR 0x22 // R/W
#define MPU6050_FIFO_EN 0x23 // R/W
#define MPU6050_I2C_MST_CTRL 0x24 // R/W
#define MPU6050_I2C_SLV0_ADDR 0x25 // R/W
#define MPU6050_I2C_SLV0_REG 0x26 // R/W
#define MPU6050_I2C_SLV0_CTRL 0x27 // R/W
#define MPU6050_I2C_SLV1_ADDR 0x28 // R/W
#define MPU6050_I2C_SLV1_REG 0x29 // R/W
#define MPU6050_I2C_SLV1_CTRL 0x2A // R/W
#define MPU6050_I2C_SLV2_ADDR 0x2B // R/W
#define MPU6050_I2C_SLV2_REG 0x2C // R/W
#define MPU6050_I2C_SLV2_CTRL 0x2D // R/W
#define MPU6050_I2C_SLV3_ADDR 0x2E // R/W
#define MPU6050_I2C_SLV3_REG 0x2F // R/W
#define MPU6050_I2C_SLV3_CTRL 0x30 // R/W
#define MPU6050_I2C_SLV4_ADDR 0x31 // R/W
#define MPU6050_I2C_SLV4_REG 0x32 // R/W
#define MPU6050_I2C_SLV4_DO 0x33 // R/W
#define MPU6050_I2C_SLV4_CTRL 0x34 // R/W
#define MPU6050_I2C_SLV4_DI 0x35 // R
#define MPU6050_I2C_MST_STATUS 0x36 // R
#define MPU6050_INT_PIN_CFG 0x37 // R/W
#define MPU6050_INT_ENABLE 0x38 // R/W
#define MPU6050_INT_STATUS 0x3A // R
#define MPU6050_ACCEL_XOUT_H 0x3B // R
#define MPU6050_ACCEL_XOUT_L 0x3C // R
#define MPU6050_ACCEL_YOUT_H 0x3D // R
#define MPU6050_ACCEL_YOUT_L 0x3E // R
#define MPU6050_ACCEL_ZOUT_H 0x3F // R
#define MPU6050_ACCEL_ZOUT_L 0x40 // R
#define MPU6050_TEMP_OUT_H 0x41 // R
#define MPU6050_TEMP_OUT_L 0x42 // R
#define MPU6050_GYRO_XOUT_H 0x43 // R
#define MPU6050_GYRO_XOUT_L 0x44 // R
#define MPU6050_GYRO_YOUT_H 0x45 // R
#define MPU6050_GYRO_YOUT_L 0x46 // R
#define MPU6050_GYRO_ZOUT_H 0x47 // R
#define MPU6050_GYRO_ZOUT_L 0x48 // R
#define MPU6050_EXT_SENS_DATA_00 0x49 // R
#define MPU6050_EXT_SENS_DATA_01 0x4A // R
#define MPU6050_EXT_SENS_DATA_02 0x4B // R
#define MPU6050_EXT_SENS_DATA_03 0x4C // R
#define MPU6050_EXT_SENS_DATA_04 0x4D // R
#define MPU6050_EXT_SENS_DATA_05 0x4E // R
#define MPU6050_EXT_SENS_DATA_06 0x4F // R
#define MPU6050_EXT_SENS_DATA_07 0x50 // R
#define MPU6050_EXT_SENS_DATA_08 0x51 // R
#define MPU6050_EXT_SENS_DATA_09 0x52 // R
#define MPU6050_EXT_SENS_DATA_10 0x53 // R
#define MPU6050_EXT_SENS_DATA_11 0x54 // R
#define MPU6050_EXT_SENS_DATA_12 0x55 // R
#define MPU6050_EXT_SENS_DATA_13 0x56 // R
#define MPU6050_EXT_SENS_DATA_14 0x57 // R
#define MPU6050_EXT_SENS_DATA_15 0x58 // R
#define MPU6050_EXT_SENS_DATA_16 0x59 // R
#define MPU6050_EXT_SENS_DATA_17 0x5A // R
#define MPU6050_EXT_SENS_DATA_18 0x5B // R
#define MPU6050_EXT_SENS_DATA_19 0x5C // R
#define MPU6050_EXT_SENS_DATA_20 0x5D // R
#define MPU6050_EXT_SENS_DATA_21 0x5E // R
#define MPU6050_EXT_SENS_DATA_22 0x5F // R
#define MPU6050_EXT_SENS_DATA_23 0x60 // R
#define MPU6050_MOT_DETECT_STATUS 0x61 // R
#define MPU6050_I2C_SLV0_DO 0x63 // R/W
#define MPU6050_I2C_SLV1_DO 0x64 // R/W
#define MPU6050_I2C_SLV2_DO 0x65 // R/W
#define MPU6050_I2C_SLV3_DO 0x66 // R/W
#define MPU6050_I2C_MST_DELAY_CTRL 0x67 // R/W
#define MPU6050_SIGNAL_PATH_RESET 0x68 // R/W
#define MPU6050_MOT_DETECT_CTRL 0x69 // R/W
#define MPU6050_USER_CTRL 0x6A // R/W
#define MPU6050_PWR_MGMT_1 0x6B // R/W
#define MPU6050_PWR_MGMT_2 0x6C // R/W
#define MPU6050_FIFO_COUNTH 0x72 // R/W
#define MPU6050_FIFO_COUNTL 0x73 // R/W
#define MPU6050_FIFO_R_W 0x74 // R/W
#define MPU6050_WHO_AM_I 0x75 // R


// Defines for the bits, to be able to change
// between bit number and binary definition.
// By using the bit number, programming the sensor
// is like programming the AVR microcontroller.
// But instead of using "(1<<X)", or "_BV(X)",
// the Arduino "bit(X)" is used.
#define MPU6050_D0 0
#define MPU6050_D1 1
#define MPU6050_D2 2
#define MPU6050_D3 3
#define MPU6050_D4 4
#define MPU6050_D5 5
#define MPU6050_D6 6
#define MPU6050_D7 7

// AUX_VDDIO Register
#define MPU6050_AUX_VDDIO MPU6050_D7 // I2C high: 1=VDD, 0=VLOGIC

// CONFIG Register
// DLPF is Digital Low Pass Filter for both gyro and accelerometers.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DLPF_CFG0 MPU6050_D0
#define MPU6050_DLPF_CFG1 MPU6050_D1
#define MPU6050_DLPF_CFG2 MPU6050_D2
#define MPU6050_EXT_SYNC_SET0 MPU6050_D3
#define MPU6050_EXT_SYNC_SET1 MPU6050_D4
#define MPU6050_EXT_SYNC_SET2 MPU6050_D5

// Combined definitions for the EXT_SYNC_SET values
#define MPU6050_EXT_SYNC_SET_0 (0)
#define MPU6050_EXT_SYNC_SET_1 (bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_2 (bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_3 (bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_4 (bit(MPU6050_EXT_SYNC_SET2))
#define MPU6050_EXT_SYNC_SET_5 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_6 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_7 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))

// Alternative names for the combined definitions.
#define MPU6050_EXT_SYNC_DISABLED MPU6050_EXT_SYNC_SET_0
#define MPU6050_EXT_SYNC_TEMP_OUT_L MPU6050_EXT_SYNC_SET_1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L MPU6050_EXT_SYNC_SET_2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L MPU6050_EXT_SYNC_SET_3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L MPU6050_EXT_SYNC_SET_4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L MPU6050_EXT_SYNC_SET_5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L MPU6050_EXT_SYNC_SET_6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L MPU6050_EXT_SYNC_SET_7

// Combined definitions for the DLPF_CFG values
#define MPU6050_DLPF_CFG_0 (0)
#define MPU6050_DLPF_CFG_1 (bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_2 (bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_3 (bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_4 (bit(MPU6050_DLPF_CFG2))
#define MPU6050_DLPF_CFG_5 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_6 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_7 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))

// Alternative names for the combined definitions
// This name uses the bandwidth (Hz) for the accelometer,
// for the gyro the bandwidth is almost the same.
#define MPU6050_DLPF_260HZ MPU6050_DLPF_CFG_0
#define MPU6050_DLPF_184HZ MPU6050_DLPF_CFG_1
#define MPU6050_DLPF_94HZ MPU6050_DLPF_CFG_2
#define MPU6050_DLPF_44HZ MPU6050_DLPF_CFG_3
#define MPU6050_DLPF_21HZ MPU6050_DLPF_CFG_4
#define MPU6050_DLPF_10HZ MPU6050_DLPF_CFG_5
#define MPU6050_DLPF_5HZ MPU6050_DLPF_CFG_6
#define MPU6050_DLPF_RESERVED MPU6050_DLPF_CFG_7

// GYRO_CONFIG Register
// The XG_ST, YG_ST, ZG_ST are bits for selftest.
// The FS_SEL sets the range for the gyro.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_FS_SEL0 MPU6050_D3
#define MPU6050_FS_SEL1 MPU6050_D4
#define MPU6050_ZG_ST MPU6050_D5
#define MPU6050_YG_ST MPU6050_D6
#define MPU6050_XG_ST MPU6050_D7

// Combined definitions for the FS_SEL values
#define MPU6050_FS_SEL_0 (0)
#define MPU6050_FS_SEL_1 (bit(MPU6050_FS_SEL0))
#define MPU6050_FS_SEL_2 (bit(MPU6050_FS_SEL1))
#define MPU6050_FS_SEL_3 (bit(MPU6050_FS_SEL1)|bit(MPU6050_FS_SEL0))

// Alternative names for the combined definitions
// The name uses the range in degrees per second.
#define MPU6050_FS_SEL_250 MPU6050_FS_SEL_0
#define MPU6050_FS_SEL_500 MPU6050_FS_SEL_1
#define MPU6050_FS_SEL_1000 MPU6050_FS_SEL_2
#define MPU6050_FS_SEL_2000 MPU6050_FS_SEL_3

// ACCEL_CONFIG Register
// The XA_ST, YA_ST, ZA_ST are bits for selftest.
// The AFS_SEL sets the range for the accelerometer.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_ACCEL_HPF0 MPU6050_D0
#define MPU6050_ACCEL_HPF1 MPU6050_D1
#define MPU6050_ACCEL_HPF2 MPU6050_D2
#define MPU6050_AFS_SEL0 MPU6050_D3
#define MPU6050_AFS_SEL1 MPU6050_D4
#define MPU6050_ZA_ST MPU6050_D5
#define MPU6050_YA_ST MPU6050_D6
#define MPU6050_XA_ST MPU6050_D7

// Combined definitions for the ACCEL_HPF values
#define MPU6050_ACCEL_HPF_0 (0)
#define MPU6050_ACCEL_HPF_1 (bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_2 (bit(MPU6050_ACCEL_HPF1))
#define MPU6050_ACCEL_HPF_3 (bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_4 (bit(MPU6050_ACCEL_HPF2))
#define MPU6050_ACCEL_HPF_7 (bit(MPU6050_ACCEL_HPF2)|bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))

// Alternative names for the combined definitions
// The name uses the Cut-off frequency.
#define MPU6050_ACCEL_HPF_RESET MPU6050_ACCEL_HPF_0
#define MPU6050_ACCEL_HPF_5HZ MPU6050_ACCEL_HPF_1
#define MPU6050_ACCEL_HPF_2_5HZ MPU6050_ACCEL_HPF_2
#define MPU6050_ACCEL_HPF_1_25HZ MPU6050_ACCEL_HPF_3
#define MPU6050_ACCEL_HPF_0_63HZ MPU6050_ACCEL_HPF_4
#define MPU6050_ACCEL_HPF_HOLD MPU6050_ACCEL_HPF_7

// Combined definitions for the AFS_SEL values
#define MPU6050_AFS_SEL_0 (0)
#define MPU6050_AFS_SEL_1 (bit(MPU6050_AFS_SEL0))
#define MPU6050_AFS_SEL_2 (bit(MPU6050_AFS_SEL1))
#define MPU6050_AFS_SEL_3 (bit(MPU6050_AFS_SEL1)|bit(MPU6050_AFS_SEL0))

// Alternative names for the combined definitions
// The name uses the full scale range for the accelerometer.
#define MPU6050_AFS_SEL_2G MPU6050_AFS_SEL_0
#define MPU6050_AFS_SEL_4G MPU6050_AFS_SEL_1
#define MPU6050_AFS_SEL_8G MPU6050_AFS_SEL_2
#define MPU6050_AFS_SEL_16G MPU6050_AFS_SEL_3

// FIFO_EN Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SLV0_FIFO_EN MPU6050_D0
#define MPU6050_SLV1_FIFO_EN MPU6050_D1
#define MPU6050_SLV2_FIFO_EN MPU6050_D2
#define MPU6050_ACCEL_FIFO_EN MPU6050_D3
#define MPU6050_ZG_FIFO_EN MPU6050_D4
#define MPU6050_YG_FIFO_EN MPU6050_D5
#define MPU6050_XG_FIFO_EN MPU6050_D6
#define MPU6050_TEMP_FIFO_EN MPU6050_D7

// I2C_MST_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_CLK0 MPU6050_D0
#define MPU6050_I2C_MST_CLK1 MPU6050_D1
#define MPU6050_I2C_MST_CLK2 MPU6050_D2
#define MPU6050_I2C_MST_CLK3 MPU6050_D3
#define MPU6050_I2C_MST_P_NSR MPU6050_D4
#define MPU6050_SLV_3_FIFO_EN MPU6050_D5
#define MPU6050_WAIT_FOR_ES MPU6050_D6
#define MPU6050_MULT_MST_EN MPU6050_D7

// Combined definitions for the I2C_MST_CLK
#define MPU6050_I2C_MST_CLK_0 (0)
#define MPU6050_I2C_MST_CLK_1 (bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_2 (bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_3 (bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_4 (bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_5 (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_6 (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_7 (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_8 (bit(MPU6050_I2C_MST_CLK3))
#define MPU6050_I2C_MST_CLK_9 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_10 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_11 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_12 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_13 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_14 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_15 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))

// Alternative names for the combined definitions
// The names uses I2C Master Clock Speed in kHz.
#define MPU6050_I2C_MST_CLK_348KHZ MPU6050_I2C_MST_CLK_0
#define MPU6050_I2C_MST_CLK_333KHZ MPU6050_I2C_MST_CLK_1
#define MPU6050_I2C_MST_CLK_320KHZ MPU6050_I2C_MST_CLK_2
#define MPU6050_I2C_MST_CLK_308KHZ MPU6050_I2C_MST_CLK_3
#define MPU6050_I2C_MST_CLK_296KHZ MPU6050_I2C_MST_CLK_4
#define MPU6050_I2C_MST_CLK_286KHZ MPU6050_I2C_MST_CLK_5
#define MPU6050_I2C_MST_CLK_276KHZ MPU6050_I2C_MST_CLK_6
#define MPU6050_I2C_MST_CLK_267KHZ MPU6050_I2C_MST_CLK_7
#define MPU6050_I2C_MST_CLK_258KHZ MPU6050_I2C_MST_CLK_8
#define MPU6050_I2C_MST_CLK_500KHZ MPU6050_I2C_MST_CLK_9
#define MPU6050_I2C_MST_CLK_471KHZ MPU6050_I2C_MST_CLK_10
#define MPU6050_I2C_MST_CLK_444KHZ MPU6050_I2C_MST_CLK_11
#define MPU6050_I2C_MST_CLK_421KHZ MPU6050_I2C_MST_CLK_12
#define MPU6050_I2C_MST_CLK_400KHZ MPU6050_I2C_MST_CLK_13
#define MPU6050_I2C_MST_CLK_381KHZ MPU6050_I2C_MST_CLK_14
#define MPU6050_I2C_MST_CLK_364KHZ MPU6050_I2C_MST_CLK_15

// I2C_SLV0_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_RW MPU6050_D7

// I2C_SLV0_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_LEN0 MPU6050_D0
#define MPU6050_I2C_SLV0_LEN1 MPU6050_D1
t#define MPU6050_I2C_SLV0_LEN2 MPU6050_D2
#define MPU6050_I2C_SLV0_LEN3 MPU6050_D3
#define MPU6050_I2C_SLV0_GRP MPU6050_D4
#define MPU6050_I2C_SLV0_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV0_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV0_EN MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV0_LEN_MASK 0x0F

// I2C_SLV1_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_RW MPU6050_D7

// I2C_SLV1_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_LEN0 MPU6050_D0
#define MPU6050_I2C_SLV1_LEN1 MPU6050_D1
#define MPU6050_I2C_SLV1_LEN2 MPU6050_D2
#define MPU6050_I2C_SLV1_LEN3 MPU6050_D3
#define MPU6050_I2C_SLV1_GRP MPU6050_D4
#define MPU6050_I2C_SLV1_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV1_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV1_EN MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV1_LEN_MASK 0x0F

// I2C_SLV2_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_RW MPU6050_D7

// I2C_SLV2_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_LEN0 MPU6050_D0
#define MPU6050_I2C_SLV2_LEN1 MPU6050_D1
#define MPU6050_I2C_SLV2_LEN2 MPU6050_D2
#define MPU6050_I2C_SLV2_LEN3 MPU6050_D3
#define MPU6050_I2C_SLV2_GRP MPU6050_D4
#define MPU6050_I2C_SLV2_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV2_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV2_EN MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV2_LEN_MASK 0x0F

// I2C_SLV3_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.ser
// I2C_SLV3_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_LEN0 MPU6050_D0
#define MPU6050_I2C_SLV3_LEN1 MPU6050_D1
#define MPU6050_I2C_SLV3_LEN2 MPU6050_D2
#define MPU6050_I2C_SLV3_LEN3 MPU6050_D3
#define MPU6050_I2C_SLV3_GRP MPU6050_D4
#define MPU6050_I2C_SLV3_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV3_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV3_EN MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV3_LEN_MASK 0x0F

// I2C_SLV4_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV4_RW MPU6050_D7

// I2C_SLV4_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_DLY0 MPU6050_D0
#define MPU6050_I2C_MST_DLY1 MPU6050_D1
#define MPU6050_I2C_MST_DLY2 MPU6050_D2
#define MPU6050_I2C_MST_DLY3 MPU6050_D3
#define MPU6050_I2C_MST_DLY4 MPU6050_D4
#define MPU6050_I2C_SLV4_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV4_INT_EN MPU6050_D6
#define MPU6050_I2C_SLV4_EN MPU6050_D7

// A mask for the delay
#define MPU6050_I2C_MST_DLY_MASK 0x1F

// I2C_MST_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_NACK MPU6050_D0
#define MPU6050_I2C_SLV1_NACK MPU6050_D1
#define MPU6050_I2C_SLV2_NACK MPU6050_D2
#define MPU6050_I2C_SLV3_NACK MPU6050_D3
#define MPU6050_I2C_SLV4_NACK MPU6050_D4
#define MPU6050_I2C_LOST_ARB MPU6050_D5
#define MPU6050_I2C_SLV4_DONE MPU6050_D6
#define MPU6050_PASS_THROUGH MPU6050_D7

// I2C_PIN_CFG Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKOUT_EN MPU6050_D0
#define MPU6050_I2C_BYPASS_EN MPU6050_D1
#define MPU6050_FSYNC_INT_EN MPU6050_D2
#define MPU6050_FSYNC_INT_LEVEL MPU6050_D3
#define MPU6050_INT_RD_CLEAR MPU6050_D4
#define MPU6050_LATCH_INT_EN MPU6050_D5
#define MPU6050_INT_OPEN MPU6050_D6
#define MPU6050_INT_LEVEL MPU6050_D7

// INT_ENABLE Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_EN MPU6050_D0
#define MPU6050_I2C_MST_INT_EN MPU6050_D3
#define MPU6050_FIFO_OFLOW_EN MPU6050_D4
#define MPU6050_ZMOT_EN MPU6050_D5
#define MPU6050_MOT_EN MPU6050_D6
#define MPU6050_FF_EN MPU6050_D7

// INT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_INT MPU6050_D0
#define MPU6050_I2C_MST_INT MPU6050_D3
#define MPU6050_FIFO_OFLOW_INT MPU6050_D4
#define MPU6050_ZMOT_INT MPU6050_D5
#define MPU6050_MOT_INT MPU6050_D6
#define MPU6050_FF_INT MPU6050_D7

// MOT_DETECT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_ZRMOT MPU6050_D0
#define MPU6050_MOT_ZPOS MPU6050_D2
#define MPU6050_MOT_ZNEG MPU6050_D3
#define MPU6050_MOT_YPOS MPU6050_D4
#define MPU6050_MOT_YNEG MPU6050_D5
#define MPU6050_MOT_XPOS MPU6050_D6
#define MPU6050_MOT_XNEG MPU6050_D7

// IC2_MST_DELAY_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_DLY_EN MPU6050_D0
#define MPU6050_I2C_SLV1_DLY_EN MPU6050_D1
#define MPU6050_I2C_SLV2_DLY_EN MPU6050_D2
#define MPU6050_I2C_SLV3_DLY_EN MPU6050_D3
#define MPU6050_I2C_SLV4_DLY_EN MPU6050_D4
#define MPU6050_DELAY_ES_SHADOW MPU6050_D7

// SIGNAL_PATH_RESET Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_TEMP_RESET MPU6050_D0
#define MPU6050_ACCEL_RESET MPU6050_D1
#define MPU6050_GYRO_RESET MPU6050_D2

// MOT_DETECT_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_COUNT0 MPU6050_D0
#define MPU6050_MOT_COUNT1 MPU6050_D1
#define MPU6050_FF_COUNT0 MPU6050_D2
#define MPU6050_FF_COUNT1 MPU6050_D3
#define MPU6050_ACCEL_ON_DELAY0 MPU6050_D4
#define MPU6050_ACCEL_ON_DELAY1 MPU6050_D5

// Combined definitions for the MOT_COUNT
#define MPU6050_MOT_COUNT_0 (0)
#define MPU6050_MOT_COUNT_1 (bit(MPU6050_MOT_COUNT0))
#define MPU6050_MOT_COUNT_2 (bit(MPU6050_MOT_COUNT1))
#define MPU6050_MOT_COUNT_3 (bit(MPU6050_MOT_COUNT1)|bit(MPU6050_MOT_COUNT0))

// Alternative names for the combined definitions
#define MPU6050_MOT_COUNT_RESET MPU6050_MOT_COUNT_0

// Combined definitions for the FF_COUNT
#define MPU6050_FF_COUNT_0 (0)
#define MPU6050_FF_COUNT_1 (bit(MPU6050_FF_COUNT0))
#define MPU6050_FF_COUNT_2 (bit(MPU6050_FF_COUNT1))
#define MPU6050_FF_COUNT_3 (bit(MPU6050_FF_COUNT1)|bit(MPU6050_FF_COUNT0))

// Alternative names for the combined definitions
#define MPU6050_FF_COUNT_RESET MPU6050_FF_COUNT_0

// Combined definitions for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0 (0)
#define MPU6050_ACCEL_ON_DELAY_1 (bit(MPU6050_ACCEL_ON_DELAY0))
#define MPU6050_ACCEL_ON_DELAY_2 (bit(MPU6050_ACCEL_ON_DELAY1))
#define MPU6050_ACCEL_ON_DELAY_3 (bit(MPU6050_ACCEL_ON_DELAY1)|bit(MPU6050_ACCEL_ON_DELAY0))

// Alternative names for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0MS MPU6050_ACCEL_ON_DELAY_0
#define MPU6050_ACCEL_ON_DELAY_1MS MPU6050_ACCEL_ON_DELAY_1
#define MPU6050_ACCEL_ON_DELAY_2MS MPU6050_ACCEL_ON_DELAY_2
#define MPU6050_ACCEL_ON_DELAY_3MS MPU6050_ACCEL_ON_DELAY_3

// USER_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SIG_COND_RESET MPU6050_D0
#define MPU6050_I2C_MST_RESET MPU6050_D1
#define MPU6050_FIFO_RESET MPU6050_D2
#define MPU6050_I2C_IF_DIS MPU6050_D4 // must be 0 for MPU-6050
#define MPU6050_I2C_MST_EN MPU6050_D5
#define MPU6050_FIFO_EN MPU6050_D6

// PWR_MGMT_1 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKSEL0 MPU6050_D0
#define MPU6050_CLKSEL1 MPU6050_D1
#define MPU6050_CLKSEL2 MPU6050_D2
#define MPU6050_TEMP_DIS MPU6050_D3 // 1: disable temperature sensor
#define MPU6050_CYCLE MPU6050_D5 // 1: sample and sleep
#define MPU6050_SLEEP MPU6050_D6 // 1: sleep mode
#define MPU6050_DEVICE_RESET MPU6050_D7 // 1: reset to default values

// Combined definitions for the CLKSEL
#define MPU6050_CLKSEL_0 (0)
#define MPU6050_CLKSEL_1 (bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_2 (bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_3 (bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_4 (bit(MPU6050_CLKSEL2))
#define MPU6050_CLKSEL_5 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_6 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_7 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))

// Alternative names for the combined definitions
#define MPU6050_CLKSEL_INTERNAL MPU6050_CLKSEL_0
#define MPU6050_CLKSEL_X MPU6050_CLKSEL_1
#define MPU6050_CLKSEL_Y MPU6050_CLKSEL_2
#define MPU6050_CLKSEL_Z MPU6050_CLKSEL_3
#define MPU6050_CLKSEL_EXT_32KHZ MPU6050_CLKSEL_4
#define MPU6050_CLKSEL_EXT_19_2MHZ MPU6050_CLKSEL_5
#define MPU6050_CLKSEL_RESERVED MPU6050_CLKSEL_6
#define MPU6050_CLKSEL_STOP MPU6050_CLKSEL_7

// PWR_MGMT_2 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_STBY_ZG MPU6050_D0
#define MPU6050_STBY_YG MPU6050_D1
#define MPU6050_STBY_XG MPU6050_D2
#define MPU6050_STBY_ZA MPU6050_D3
#define MPU6050_STBY_YA MPU6050_D4
#define MPU6050_STBY_XA MPU6050_D5
#define MPU6050_LP_WAKE_CTRL0 MPU6050_D6
#define MPU6050_LP_WAKE_CTRL1 MPU6050_D7

// Combined definitions for the LP_WAKE_CTRL
#define MPU6050_LP_WAKE_CTRL_0 (0)
#define MPU6050_LP_WAKE_CTRL_1 (bit(MPU6050_LP_WAKE_CTRL0))
#define MPU6050_LP_WAKE_CTRL_2 (bit(MPU6050_LP_WAKE_CTRL1))
#define MPU6050_LP_WAKE_CTRL_3 (bit(MPU6050_LP_WAKE_CTRL1)|bit(MPU6050_LP_WAKE_CTRL0))

// Alternative names for the combined definitions
// The names uses the Wake-up Frequency.
#define MPU6050_LP_WAKE_1_25HZ MPU6050_LP_WAKE_CTRL_0
#define MPU6050_LP_WAKE_2_5HZ MPU6050_LP_WAKE_CTRL_1
#define MPU6050_LP_WAKE_5HZ MPU6050_LP_WAKE_CTRL_2
#define MPU6050_LP_WAKE_10HZ MPU6050_LP_WAKE_CTRL_3


// Default I2C address for the MPU-6050 is 0x68.
// But only if the AD0 pin is low.
// Some sensor boards have AD0 high, and the
// I2C address thus becomes 0x69.
#define MPU6050_I2C_ADDRESS 0x68

//Compte tours
#define SENSOR_INTERRUPT 0
#define SENSOR_PIN 2

// Timer
volatile unsigned int risingCount = 0;
volatile unsigned long cadence;

// Output RGB
int redPin = 9; // Red LED, connected to digital pin 9
int greenPin = 10; // Green LED, connected to digital pin 10
int bluePin = 11; // Blue LED, connected to digital pin 11
// Color arrays
int red[3] = { 100, 0, 0 };
int green[3] = { 0, 100, 0 };
int blue[3] = { 0, 0, 100 };

// Set up the LED outputs




// Declaring an union for the registers and the axis values.
// The byte order does not match the byte order of
// the compiler and AVR chip.
// The AVR chip (on the Arduino board) has the Low Byte
// at the lower address.
// But the MPU-6050 has a different order: High Byte at
// lower address, so that has to be corrected.
// The register part "reg" is only used internally,
// and are swapped in code.
typedef union accel_t_gyro_union
{
struct
{
uint8_t x_accel_h;
uint8_t x_accel_l;
uint8_t y_accel_h;
uint8_t y_accel_l;
uint8_t z_accel_h;
uint8_t z_accel_l;
uint8_t t_h;
uint8_t t_l;
uint8_t x_gyro_h;
uint8_t x_gyro_l;
uint8_t y_gyro_h;
uint8_t y_gyro_l;
uint8_t z_gyro_h;
uint8_t z_gyro_l;
} reg;
struct
{
int x_accel;
int y_accel;
int z_accel;
int temperature;
int x_gyro;
int y_gyro;
int z_gyro;
} value;
};

// Use the following global variables and access functions to help store the overall
// rotation angle of the sensor
unsigned long last_read_time;
float last_x_angle; // These are the filtered angles
float last_y_angle;
float last_z_angle;
float last_gyro_x_angle; // Store the gyro angles to compare drift
float last_gyro_y_angle;
float last_gyro_z_angle;

void set_last_read_angle_data(unsigned long time, float x, float y, float z, float x_gyro, float y_gyro, float z_gyro) {
last_read_time = time;
last_x_angle = x;
last_y_angle = y;
last_z_angle = z;
last_gyro_x_angle = x_gyro;
last_gyro_y_angle = y_gyro;
last_gyro_z_angle = z_gyro;
}

inline unsigned long get_last_time() {return last_read_time;}
inline float get_last_x_angle() {return last_x_angle;}
inline float get_last_y_angle() {return last_y_angle;}
inline float get_last_z_angle() {return last_z_angle;}
inline float get_last_gyro_x_angle() {return last_gyro_x_angle;}
inline float get_last_gyro_y_angle() {return last_gyro_y_angle;}
inline float get_last_gyro_z_angle() {return last_gyro_z_angle;}

// Use the following global variables and access functions
// to calibrate the acceleration sensor
float base_x_accel;
float base_y_accel;
float base_z_accel;

float base_x_gyro;
float base_y_gyro;
float base_z_gyro;


int read_gyro_accel_vals(uint8_t* accel_t_gyro_ptr) {
// Read the raw values.
// Read 14 bytes at once,
// containing acceleration, temperature and gyro.
// With the default settings of the MPU-6050,
// there is no filter enabled, and the values
// are not very stable. Returns the error value

accel_t_gyro_union* accel_t_gyro = (accel_t_gyro_union *) accel_t_gyro_ptr;

int error = MPU6050_read (MPU6050_ACCEL_XOUT_H, (uint8_t *) accel_t_gyro, sizeof(*accel_t_gyro));

// Swap all high and low bytes.
// After this, the registers values are swapped,
// so the structure name like x_accel_l does no
// longer contain the lower byte.
uint8_t swap;
#define SWAP(x,y) swap = x; x = y; y = swap

SWAP ((*accel_t_gyro).reg.x_accel_h, (*accel_t_gyro).reg.x_accel_l);
SWAP ((*accel_t_gyro).reg.y_accel_h, (*accel_t_gyro).reg.y_accel_l);
SWAP ((*accel_t_gyro).reg.z_accel_h, (*accel_t_gyro).reg.z_accel_l);
SWAP ((*accel_t_gyro).reg.t_h, (*accel_t_gyro).reg.t_l);
SWAP ((*accel_t_gyro).reg.x_gyro_h, (*accel_t_gyro).reg.x_gyro_l);
SWAP ((*accel_t_gyro).reg.y_gyro_h, (*accel_t_gyro).reg.y_gyro_l);
SWAP ((*accel_t_gyro).reg.z_gyro_h, (*accel_t_gyro).reg.z_gyro_l);

return error;
}

// The sensor should be motionless on a horizontal surface
// while calibration is happening
void calibrate_sensors() {
int num_readings = 10;
float x_accel = 0;
float y_accel = 0;
float z_accel = 0;
float x_gyro = 0;
float y_gyro = 0;
float z_gyro = 0;
accel_t_gyro_union accel_t_gyro;

//Serial.println("Starting Calibration");

// Discard the first set of values read from the IMU
read_gyro_accel_vals((uint8_t *) &accel_t_gyro);

// Read and average the raw values from the IMU
for (int i = 0; i < num_readings; i++) {
read_gyro_accel_vals((uint8_t *) &accel_t_gyro);
x_accel += accel_t_gyro.value.x_accel;
y_accel += accel_t_gyro.value.y_accel;
z_accel += accel_t_gyro.value.z_accel;
x_gyro += accel_t_gyro.value.x_gyro;
y_gyro += accel_t_gyro.value.y_gyro;
z_gyro += accel_t_gyro.value.z_gyro;
delay(100);
}
x_accel /= num_readings;
y_accel /= num_readings;
z_accel /= num_readings;
x_gyro /= num_readings;
y_gyro /= num_readings;
z_gyro /= num_readings;

// Store the raw calibration values globally
base_x_accel = x_accel;
base_y_accel = y_accel;
base_z_accel = z_accel;
base_x_gyro = x_gyro;
base_y_gyro = y_gyro;
base_z_gyro = z_gyro;

//Serial.println("Finishing Calibration");
}


void setup()
{


pinMode(redPin, OUTPUT); // sets the pins as output
pinMode(greenPin, OUTPUT); 
pinMode(bluePin, OUTPUT); 
int error;
uint8_t c;


Serial.begin(19200);
/*
Serial.println(F("InvenSense MPU-6050"));
Serial.println(F("June 2012"));
*/
// Initialize the 'Wire' class for the I2C-bus.
Wire.begin();


// default at power-up:
// Gyro at 250 degrees second
// Acceleration at 2g
// Clock source at internal 8MHz
// The device is in sleep mode.
//

error = MPU6050_read (MPU6050_WHO_AM_I, &c, 1);
/*
Serial.print(F("WHO_AM_I : "));
Serial.print(c,HEX);
Serial.print(F(", error = "));
Serial.println(error,DEC);
*/

// According to the datasheet, the 'sleep' bit
// should read a '1'. But I read a '0'.
// That bit has to be cleared, since the sensor
// is in sleep mode at power-up. Even if the
// bit reads '0'.
error = MPU6050_read (MPU6050_PWR_MGMT_2, &c, 1);
/*
Serial.print(F("PWR_MGMT_2 : "));
Serial.print(c,HEX);
Serial.print(F(", error = "));
Serial.println(error,DEC);
*/

// Clear the 'sleep' bit to start the sensor.
MPU6050_write_reg (MPU6050_PWR_MGMT_1, 0);

//Initialize the angles
calibrate_sensors();
set_last_read_angle_data(millis(), 0, 0, 0, 0, 0, 0);
}


void loop()
{
static unsigned long startTime;
static byte firstRise = 1;
unsigned long now = micros();
int error;
accel_t_gyro_union accel_t_gyro;

// Read the raw values.
error = read_gyro_accel_vals((uint8_t*) &accel_t_gyro);

// Get the time of reading for rotation computations
unsigned long t_now = millis();


// Convert gyro values to degrees/sec
float FS_SEL = 131;

float gyro_x = (accel_t_gyro.value.x_gyro - base_x_gyro)/FS_SEL;
float gyro_y = (accel_t_gyro.value.y_gyro - base_y_gyro)/FS_SEL;
float gyro_z = (accel_t_gyro.value.z_gyro - base_z_gyro)/FS_SEL;


// Get raw acceleration values
//float G_CONVERT = 16384;
float accel_x = accel_t_gyro.value.x_accel;
float accel_y = accel_t_gyro.value.y_accel;
float accel_z = accel_t_gyro.value.z_accel;

// Get angle values from accelerometer
float RADIANS_TO_DEGREES = 180/3.14159;float accel_angle_y = atan(-1*accel_x/sqrt(pow(accel_y,2) + pow(accel_z,2)))*RADIANS_TO_DEGREES;
float accel_pente = atan(accel_y/sqrt(pow(accel_x,2) + pow(accel_z,2)))*RADIANS_TO_DEGREES;

// Compute the (filtered) gyro angles
float dt =(t_now - get_last_time())/1000.0;
float gyro_pente = gyro_x*dt + get_last_x_angle();
float gyro_angle_y = gyro_y*dt + get_last_y_angle();
float gyro_angle_z = gyro_z*dt + get_last_z_angle();

// Compute the drifting gyro angles
float unfiltered_gyro_pente = gyro_x*dt + get_last_gyro_x_angle();
float unfiltered_gyro_angle_y = gyro_y*dt + get_last_gyro_y_angle();
float unfiltered_gyro_angle_z = gyro_z*dt + get_last_gyro_z_angle();

// Apply the complementary filter to figure out the change in angle - choice of alpha is
// estimated now. Alpha depends on the sampling rate...
float alpha = 0.96;
float pente = alpha*gyro_pente + (1.0 - alpha)*accel_pente;
float angle_y = alpha*gyro_angle_y + (1.0 - alpha)*accel_angle_y;
float angle_z = gyro_angle_z; //Accelerometer doesn't give z-angle

// Update the saved data with the latest values
set_last_read_angle_data(t_now, pente, angle_y, angle_z, unfiltered_gyro_pente, unfiltered_gyro_angle_y, unfiltered_gyro_angle_z);

// Send the data to the serial port
Serial.print(F(" #FIL : ")); //Filtered angle
Serial.print(pente, 2);
// Serial.print(angle_y, 2);
Serial.print(F(", "));
// Serial.print(angle_z, 2);
Serial.println(F(""));

// Delay so we don't swamp the serial port
delay(5);

//Si l'aimant passe devant le capteur
if (analogRead(SENSOR_PIN) == 0) {
//Cadence = écart entre dernier tour et maintenant 
cadence = now - startTime;

//on tiendra compte de +/- 5 tours minutes
//85 tours par minute a plat FAUX -
if (pente > -3 && pente < 3 && cadence < 666000 )
{ 
setColor(0, 0, 255);  // blue
}

//85 tours par minute a plat FAUX +
if (pente > -3 && pente < 3 && cadence > 750000 )
{ 
setColor(255, 0, 0);  // red
}

//85 tours par minute a plat JUSTE
if (pente > -3 && pente < 3 && cadence < 750000  && cadence > 666000 )
{ 
setColor(0, 255, 0);  // green
}


//75 tours par minute en montée faible FAUX -
if (pente > 3 && pente < 13 && cadence < 750000)
{ 
setColor(0, 0, 255);  // blue
}

//75 tours par minute en montée faible FAUX +
if (pente > 3 && pente < 13 && cadence > 857000 )
{ 
setColor(255, 0, 0);  // red
}

//75 tours par minute en montée faible JUSTE
if (pente > 3 && pente < 13 && cadence > 750000 && cadence < 857000  )
{ 
setColor(0, 255, 0);  // green
}

//65 tours par minute en montée hardcore FAUX -
if (pente > 13 && pente < 30 && cadence < 857000 )
{ 
setColor(0, 0, 255);  // blue
}

//65 tours par minute en montée hardcore FAUX +
if (pente > 13 && pente < 30 && cadence > 1000000 )
{ 
setColor(255, 0, 0);  // red
}

//65 tours par minute en montée hardcore JUSTE
if (pente > 13 && pente < 30 && cadence < 1000000 && cadence > 857000  )
{ 
setColor(0, 255, 0);  // green
}

// 100 tours par minute en descente JUSTE
if (pente < -3)
{ 
setColor(0, 255, 0);  // green
}

Serial.println(cadence);

//On remet a zéro l'écart
startTime = now;
} 
}

  void setColor(int red, int green, int blue)
{
  analogWrite(redPin, red);
  analogWrite(greenPin, green);
  analogWrite(bluePin, blue);
}

// --------------------------------------------------------
// MPU6050_read
//
// This is a common function to read multiple bytes
// from an I2C device.
//
// It uses the boolean parameter for Wire.endTransMission()
// to be able to hold or release the I2C-bus.
// This is implemented in Arduino 1.0.1.
//
// Only this function is used to read.
// There is no function for a single byte.
//
int MPU6050_read(int start, uint8_t *buffer, int size)
{
int i, n, error;

Wire.beginTransmission(MPU6050_I2C_ADDRESS);
n = Wire.write(start);
if (n != 1)
return (-10);

n = Wire.endTransmission(false); // hold the I2C-bus
if (n != 0)
return (n);

// Third parameter is true: relase I2C-bus after data is read.
Wire.requestFrom(MPU6050_I2C_ADDRESS, size, true);
i = 0;
while(Wire.available() && i<size)
{
buffer[i++]=Wire.read();
}
if ( i != size)
return (-11);

return (0); // return : no error
}


// --------------------------------------------------------
// MPU6050_write
//
// This is a common function to write multiple bytes to an I2C device.
//
// If only a single register is written,
// use the function MPU_6050_write_reg().
//
// Parameters:
// start : Start address, use a define for the register
// pData : A pointer to the data to write.
// size : The number of bytes to write.
//
// If only a single register is written, a pointer
// to the data has to be used, and the size is
// a single byte:
// int data = 0; // the data to write
// MPU6050_write (MPU6050_PWR_MGMT_1, &c, 1);
//
int MPU6050_write(int start, const uint8_t *pData, int size)
{
int n, error;

Wire.beginTransmission(MPU6050_I2C_ADDRESS);
n = Wire.write(start); // write the start address
if (n != 1)
return (-20);

n = Wire.write(pData, size); // write data bytes
if (n != size)
return (-21);

error = Wire.endTransmission(true); // release the I2C-bus
if (error != 0)
return (error);

return (0); // return : no error
}

// --------------------------------------------------------
// MPU6050_write_reg
//
// An extra function to write a single register.
// It is just a wrapper around the MPU_6050_write()
// function, and it is only a convenient function
// to make it easier to write a single register.
//
int MPU6050_write_reg(int reg, uint8_t data)
{
int error;

error = MPU6050_write(reg, &data, 1);

return (error);
}

Notre circuit fonctionne bien, les fils coupés et dénudés deviennent un peu fragiles il faut les ressouder régulièrement.

4. Discussion

Les résultats et méthodes

Nous ne nous y sommes pas pris assez en avance ce qui nous a pénalisé pour réaliser les finitions. Notre projet n'est qu'un prototype d'un circuit et ne peux pas être utilisé comme tel. Il nous faut y rajouter une batterie.

Le plus grand problème que nous avons remarqué est notre manque d'expérience dans la logique syntaxique du code, nous aurions pu l'optimiser en utilisant des états et des fonctions plus complexes.

Les apprentissages réalisés

Nous avons appris à rechercher sur le net les informations voulues et à les comprendre par nous même. Ce travail nous a également appris que la pratique n'est pas autant facile que la théorie et qu'il y aura toujours des adaptations à faire au niveau du code pour tout assembler.

Les difficultés rencontrées



Si nous avons rapidement su établir un plan pour notre projet, sa conception nous a donné du fils à retordre. Dans un premier temps, il a fallut démonter le récepteur de l'aimant et analyser le signal sortant. Nous avons été très surpris par la forme de ce signal que nous attendions à voir l'exact opposé. Nous avons utilisé le code que notre professeur, M. Javier Iglesias, à utilisé au cours de son projet pour calculer la fréquence d'un moteur d'avion.

Mais le plus dur se trouva être la compréhension du code pour l'accéléromètre. Même si nous avons trouvé un code très satisfaisant et muni d'un filtre pour une obtention de meilleures valeurs, il resta pas moins complexe et muni d'une syntaxe jusqu'alors inconnue pour nous.

Le fait de ne pas avoir beaucoup expérience a fait que noter syntaxe et notre esprit logique n'optimisent pas le code et le rendent lourd et pas précis. On peut bien voir que la dernière partie est trop longue et trop compliquée.

5. Conclusion

Pour conclure, notre résultat n'est pas à la hauteur de nos attentes mais est fonctionnel et utilisable comme base pour une suite.

6 Et maintenant?

Arrivés à la fin du projet nous voyons maintenant les defauts de celui-ci mais nous pouvons aussi entrevoir les ouvertures pour des projets futurs. Nous avons entrevu grand nombre d'améliorations comme par exemple un software pour téléphone portable qui permettrait de choisir sa difficulté. Nous pouvions aussi intégrer un capteur cardiaque pour eviter que le cycliste meure à cause de l'effort.

Une puce GPS pourrait être utilisée pour ensuite créer un tracé du parcours de l'utilisateur et voir son progrès au niveau des distances parcourues.